

CFRP Repair of Pipelines – The Current State of the Art

Murat Engindeniz, Ph.D., P.E.

SIMPSON GUMPERTZ & HEGER

Engineering of Structures and Building Enclosures

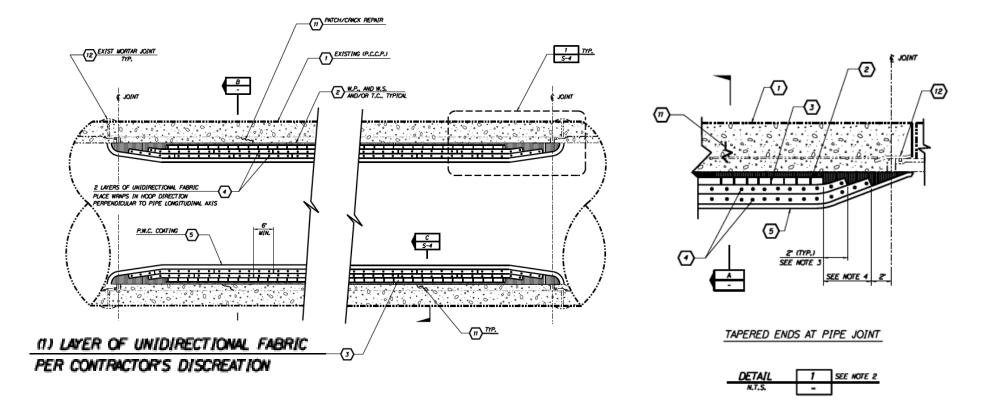
mengindeniz@sgh.com

(781) 907-9110

2015 © American Water Works Association AWWA Water Infrastructure Conference Proceedings All Rights Reserved

CFRP Repair of Pipe

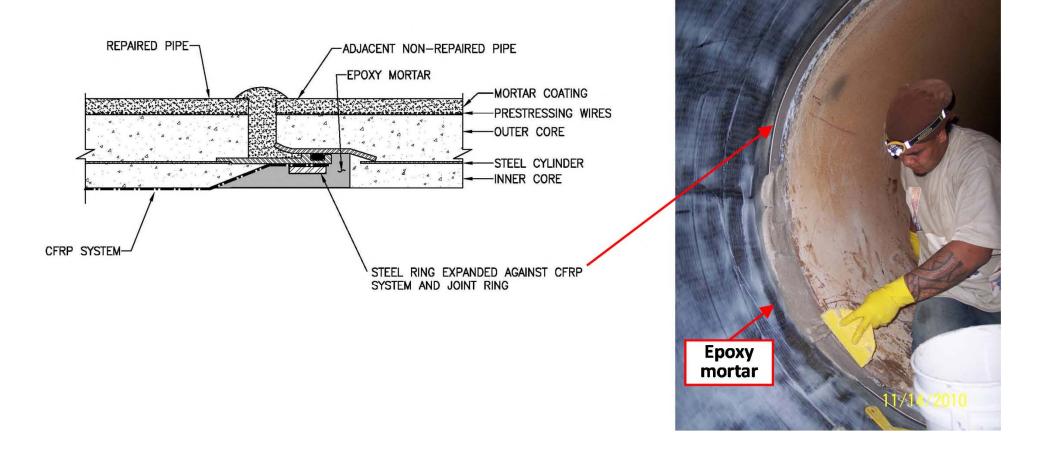
- + Widely preferred method
- + No excavation
- + Standalone
- + Fast
- + Targeted or continuous repairs
- + Emergency repairs
- Specialty repair in confined space
- Environmental controls
- Cost


History

- 1980s: CFRP is used to repair civil infrastructure
- 1990s early 2000s: Various utilities start using CFRP to repair pipe
- Mid-2000s: CFRP repair of pipe is widespread
- 2009: AWWA Concrete Pressure Pipe Committee appoints a subcommittee
- 2011: AWWA Standards Council approved the development of a standard
- 2011: Water Research Foundation awards the first research project to form the technical basis of the standard
- 2013 2015: Additional research on watertightness, degree of cure, etc.
- 2015: AWWA Draft Standard for CFRP Renewal and Strengthening of PCCP is complete (currently balloted)

Earlier Practice (1990s-2000s)

- "Factor of safety" design
- Few limit states (i.e., mostly pressure, Pr/t)
- Few CFRP layers, sometimes with no longitudinal
- CFRP terminated mostly on concrete
- No watertightness measures
- Limited QA inspections and testing
- Limited requirements to qualify material, contractor, designer, inspector


Earlier Practice (1990s-2000s)

Practice in 2000s

- Need for better termination is established
- Additional limit states are considered
- Standalone concept
- More CFRP layers
- Improved QA/QC requirements

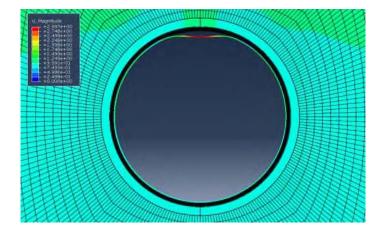
Practice in 2000s

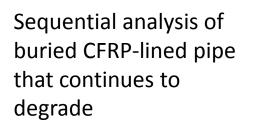
WRF Projects (2011-2015)

- LRFD procedure
- FEA of CFRP-lined pipe
- Full-scale tests
 - Hydrostatic pressure
 - Three-edge bearing
- Laboratory tests
 - Shear bond strength
 - Degree of cure
 - Watertightness

LRFD Approach

$$R_u \leq \lambda \varphi R_n = \lambda \varphi(CR_o)$$


- R_u = required strength computed from factored load combinations
- λ = time effect factor
- ϕ = resistance factor
- R_n = strength in the end-use condition
- C = material adjustment factor
- R_o = test strength of unexposed material


Limit States

- Hoop rupture under pressure
- Hoop rupture in bending
- Hoop rupture under combined pressure and bending
- Hoop buckling
- Longitudinal rupture in tension
- Longitudinal rupture at BWZ edge
- Longitudinal buckling
- Shear debonding at pipe ends

Concrete inter core Criterio C

Soil

FEA Validation

Buckling analysis

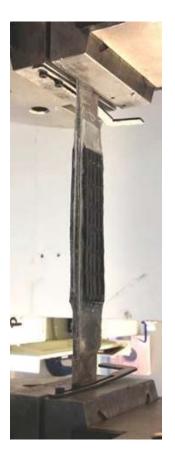
Full-Scale 3-Edge Bearing Tests

48 in. LCP - Control

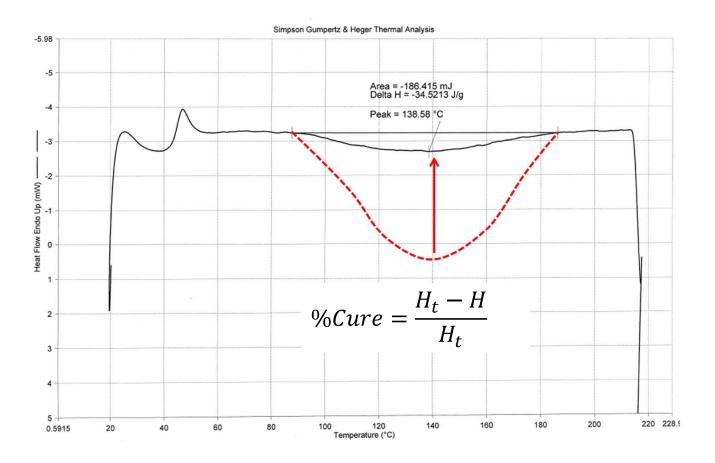
48 in. LCP

Full-Scale Hydrostatic Pressure Tests

54 in. ECP

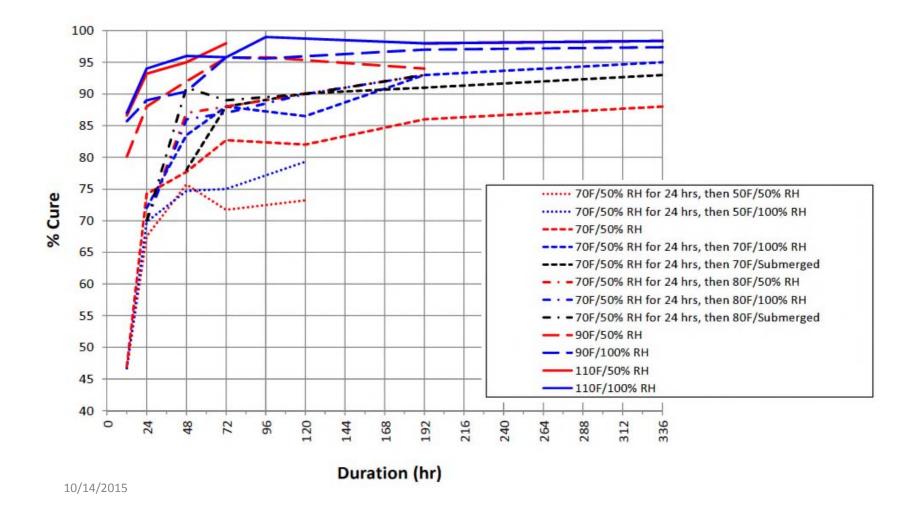


Shear Bond Strength on Steel Substrate

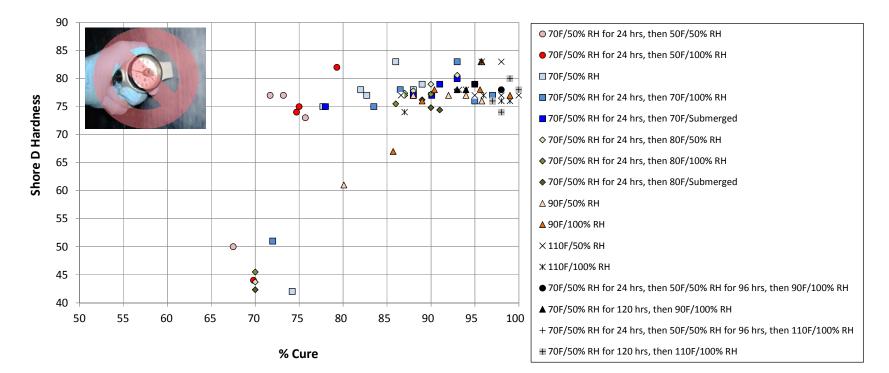


Degree of Cure

10/14/2015


2015 © American Water Works Association AWWA Water Infrastructure Conference Proceedings All Rights Reserved

Degree of Cure vs Material Properties

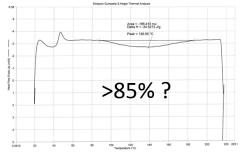

	Need minimu cure before p back in servic	lacing pipe		
		Mean	Mean	Mean
	No. of	Strength	Modulus	Ultimate
Cure Level	Samples	(ksi)	(ksi)	Strain (%)
75% (24 hr at 70°F)	12	91.3	_(1)	_(1)
88% (72 hr at 70°F)	$12^{(2)}$	163.1	12,100	1.32%
95% (24 hr at $70^{\circ}F + 16$ hr at $100^{\circ}F$)	12	145.4	11,800	1.23%
100% (69 hr at 70°F + 3 hr at 165°F)	12	144.9	12,300	1.18%

Progression of Cure

Varies by material

How to Verify Cure in Construction

Take samples in field

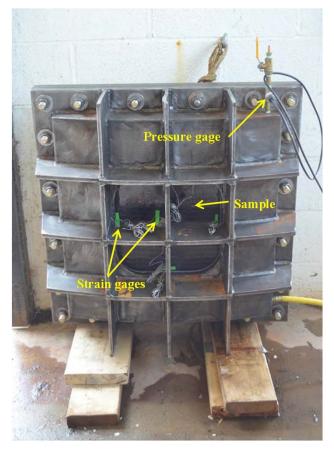

10/14/2015

Send to laboratory

Determine degree of cure

The Latest Development: Watertightness Test

- Will standalone CFRP remain watertight at design pressure?
- Watertightness is affected by:
 - Saturation
 - Laminate architecture
 - Brittleness of resin
 - Degree of cure
 - Top coat



The Latest Development: Watertightness Test

- Allows testing of laminates on a project-by-project basis
- Allows proof-of-concept tests at reasonable cost
 - New fabrics, resins, top coats
- 500 psi capacity

Watertightness Acceptance Criteria

- $P_{WLT} = min(P_{test1}, P_{test2}, P_{test3}, ...)$
- P_{WLT} > 2P_{design}

Specimen with no leaks at 400 psi

10/14/2015

Specimen with multiple leaks at 150 psi

Summary of Current Practice

- Qualification of designers, materials, contractors, inspectors
- LRFD design per AWWA Standard
 - Consistent design with solid experimental and analytical basis
- Varying laminate architectures
- Watertightness measures
- More layers now? yes and no
- Improved QA procedures (e.g., cure)

Closure

- CFRP repair of pipe is a well-established technology.
- As with other technologies, it has evolved over the years.
- A standard has been developed, which will result in more consistent design and installation.
- Moving forward, methodologies are not expected to change significantly.
- Focus may be shifted to new CFRP lining methods, materials, reducing cost, etc.

Acknowledgement

- Water Research Foundation
- American Concrete Pressure Pipe Association
- Hanson Pipe and Products
- Tarrant Regional Water District
- Metropolitan Water District of Southern California
- Howard County Department of Public Works
- Washington Suburban Sanitary Commission
- Structural Technologies
- Fyfe Company
- Fibrwrap Construction

Questions?

Murat Engindeniz, Ph.D., P.E. mengindeniz@sgh.com (781) 907-9110

SIMPSON GUMPERTZ & HEGER

Engineering of Structures and Building Enclosures

2015 © American Water Works Association AWWA Water Infrastructure Conference Proceedings All Rights Reserved