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ABSTRACT
The expanding role of computational models in the process of design is producing exponen-
tial growth in parameter spaces. As designers, we must create and implement new methods for 
searching these parameter spaces, considering not only quantitative optimization metrics but 
also qualitative features. This paper proposes a methodology that leverages the pattern modeling 
properties of artificial neural networks to capture designers' inexplicit selection criteria and create 
user-selection-based fitness functions for a genetic solver. Through emulation of learned selection 
patterns, fitness functions based on trained networks provide a method for qualitative evaluation of 
designs in the context of a given population. The application of genetic solvers for the generation 
of new populations based on the trained network selections creates emergent high-density clus-
ters in the parameter space, allowing for the identification of solutions that satisfy the designer’s 
inexplicit criteria. The results of an initial user study show that even with small numbers of training 
objects, a search tool with this configuration can begin to emulate the design criteria of the user 
who trained it. 
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INTRODUCTION
As the influence of computation on design continues to grow, 
designers have the ability to optimize and account for high 
numbers of variables. This results in a high-dimension solu-
tion space and an exponentially increasing number of possible 
variations. Optimization strategies enable designers to navigate 
toward solutions which are quantitatively superior in pre-defined 
tests, but that limit the designer's ability to search the solution 
space for qualitative aspects. Fully accepting a quantitatively 
optimized solution poses an issue for designers. Calculating a 
top performing design based on limited or standardized criteria 
reduces the role of the designer. This has the potential to situate 
design as a secondary layer on calculated models. This workflow 
limits the ability of designers to holistically consider the aspects 
of design problems that are abstract or qualitative. To counteract 
this side effect, designers may include quantitative descriptions 
of qualitative criteria into their computational models. In doing so, 
they constrain the solution space based on their pre-conceived 
expectations of the possible outcomes. In either situation, the 
designer is limited in their exploration of the full solution space, 
which reduces opportunities to discover emergent properties of 
designs resulting from unexpected combinations of parameters.

If we are to avoid this, we must re-evaluate the possible methods 
for navigating vast solution spaces and create models that can 
evaluate solutions based on both quantitative evaluations and 
qualitative properties. In the context of this project, the term 
qualitative is used to describe features of a computationally 
generated design that are visibly recognizable as favorable to 
the designer, but are not measured by the designer’s script as an 
evaluation of the design’s performance. These features can be 
understood to be the emergent result of the combined state of 
many parameters of the design. Due to the abstract and subjec-
tive nature of qualitative criteria, designers can benefit from 
a process of selecting solutions based on their own expertise 

and intuition, rather than the simplification of a problem and 
constraint of possible solutions. 

If a tool used by the designer requires them to explicitly define 
each of the criteria at the onset of the search for a solution, 
the process of exploration, discovery, and redirection is lost. 
To create tools that more naturally resemble the designer’s 
process, we can begin to develop a bottom-up approach to the 
creation of constraints for the solution space. The collection of a 
designer’s choices in their own process of curating possibilities 
to a design problem contains patterns that can be used to form a 
model of their inexplicit criteria.

This project seeks to develop and test a method for searching 
vast solution spaces based on inexplicit evaluation criteria 
demonstrated by designers using the system. The pairing of arti-
ficial neural networks with genetic solvers provides a means of 
searching solution spaces for learned selection criteria. Machine 
learning methods allow for the formation of evaluative criteria 
based on patterns learned from the user’s selection of design 
options. As designers are iteratively presented with design 
choices, they will choose the solutions that meet their personal 
aesthetic, abstract, or qualitative criteria for design. The encoded 
design parameters for the possible selections, as well as the 
actual user selections, are recorded as a training set for an artifi-
cial neural network. A network trained on this selection data acts 
as a model of the user’s evaluation of design options. Using this 
model as the fitness function for an evolutionary solver provides 
a mechanism for searching solution spaces that contain more 
design possibilities than could possibly be individually evaluated 
by a human designer. Learning from the designer’s evaluation of 
a sample of the possible solutions, this system demonstrates an 
ability to identify additional high performing regions of the solu-
tion space based on the user’s inexplicit qualitative criteria. 

22  Diagram representing the training and search processes.
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BACKGROUND
The use of machine learning as a method of solving complex 
problems has been a reality of computer science since the 1950s. 
Early models of machine learning, such as Arthur Samuel’s 1952 
model of the game of Checkers, proved for the first time that 
a machine could learn to play a game better than its creator in 
a short period of time (Samuel 1957). This is considered to be 
the first developed machine learning algorithm. In the realm of 
design, it is conceivable that such a moment might also occur, 
where a system could eclipse the ability of human designers to 
consider and respond to the vast numbers of variables and rela-
tionships that influence design. 

The writings and work of Nicholas Negroponte of MIT illustrate 
the recognition of this possibility within the design field. His work 
contemplated authorship in the era of machine-aided design. 
Posing critical questions regarding the role that smart machines 
would play in design, he hypothesized that computing systems 
that he deemed “Architecture Machines” would one day go 
beyond the automation and repetition of tasks that are tedious 
to the architect. He also proposed that such systems would not 
only learn about architecture, but would “learn about learning 
about architecture” (Negroponte 1967). This concept of tools 
learning from our design processes serves as a driver of this 
project. 

The use of genetic algorithms for design purposes, along with 
the further exploration of the concepts of tools that learn, were 
further explored for the purposes of design throughout the 
second half of the 20th century. Machine learning using genetic 

algorithms was explored as a means of developing shape gram-
mars and altering the "state space" of a design (Gero, Louis, and 
Kundu 1994). The conception of the design as a state being 
encoded as a sequence of parameters pushed the development 
of further algorithmic design methodologies.

Searching solution spaces for desired metrics has become one of 
the most prominent methods of solving complex design prob-
lems in recent years. Black Box Studio at Skidmore, Owings, and 
Merrill (SOM) began exploring the ability to apply search algo-
rithms to architectural optimization problems in the early 2000s. 
Their work focused on the use of genetic algorithms to search for 
optimized solutions to daylighting performance in tower massing 
(Besserud 2008). This work laid out the process for applying 
evolutionary genetic solvers to design problems. By identifying 
the parameters that could be manipulated in the form of the 
tower, they provided the algorithm with the genomes to manipu-
late. The fitness function or evaluation criteria for genomes 
in this study was based on the geometry’s performance in a 
daylighting analysis. Using these inputs, the genetic algorithm 
iteratively creates and tests sets of individual design genomes 
and evaluates their performance. Although genetic algorithms 
are very effective at finding the single highest performing 
solution, they identify the goal of their work as the ability to 
visualize and evaluate a range of many well-performing design 
solutions (Besserud 2008). This work shows the increasing 
interest of designers and architects in the curation of possible 
design solutions through algorithmic methods. Recent projects 
by research groups at Autodesk have further explored the use of 
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3	 System logic diagram representing 
the roles of each algorithm used.
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genetic algorithms as part of a “generative design” process. The 
application of multi-objective optimization algorithms to the task 
of space planning allows their system to balance six different 
criteria in the formation of a plan for an office space (Nagy et al. 
2017).

Several tools have become available for designers seeking 
to incorporate genetic algorithms in the architectural design 
process, most notably Galapagos for Rhino Grasshopper (Rutten 
2013) and Optimo for Revit Dynamo (Asl et al. 2015). These 
tools allow designers using visual scripting platforms to use 
genetic algorithms without needing to code the entire process. 
The increasing complexity of models of design problems in 
architecture has furthered the exploration of methods for navi-
gating vast solution spaces for pre-defined metrics, but current 
methods lack the ability to search for more abstract qualities that 
represent the designer’s expertise or intuition. 

The application of machine learning methods for the formation 
of a model of the inexplicit evaluation heuristics of designers 
could enable searches of solution spaces to return design 
options representing the qualitative evaluation of the designer or 
designers making a selection.

METHODOLOGY
The implementation of this project is intended to accomplish two 
overarching goals: training a neural network based on user selec-
tion, and performing a search of the remaining parameter space 
of the user-created script. To better integrate this functionality 
into the workflow of architectural computational designers, this 
system is designed to be added to scripts created by Autodesk 
Dynamo users. As shown in Figure 4, the Dynamo environ-
ment acts as a front-end of the system, and an external Python 
program executes the machine learning, evolutionary search, and 
cluster identification tasks. Results of the search of the parameter 

4	 Example representation of gener-
ated design options in Autodesk 
Dynamo using standard Watch3D 
components.

5	 Custom component used to provide the system with ranges for all included 
parameters.

6	 Custom component used to create training pairs based on user selection.
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7	 Search logic diagram showing the 
cycle of population evolution and 
scoring.

as a list of the index numbers of the designs they identify as their 
top choices based on their personal criteria. Once the user has 
made the desired number of selections, the PhenotypeSelector 
will export the training data to the Python program, where it will 
later be used to train the machine learning algorithm and search 
the parameter space.

This project uses a supervised neural network to create the 
predictive scoring model used for design evaluation. The 
Python program created for this project relies heavily on the 
machine learning libraries PyBrain (Schaul et al. 2010) and 
scikit-Learn (Pedregosa et al. 2011) to perform machine learning 
and data analysis tasks. The training set file generated by the 
PhenotypeSelector component serves as the primary input for 
the Python script. The raw population and ranking data in this file 
must be encoded properly before being fed to the network for 
training. Input-output pairs, or "training objects," must be assem-
bled from each selection generation to create the final training 
set for the supervised network.

The input side of each training object contains the sequence 
of parameter values that created the designs in the selection 
population. All inputs are normalized to a range between zero 
and one, representing their relative percentage along the param-
eter's value range. This normalization prevents unequal weighting 
of parameters in the neural network. The output side of each 
training object contains the relative scores for the designs. 
Scores are calculated relative to the ranking of the design. The 
highest performing design receives a score of 1.00, the second 
receives a score of 0.66, the third receives a score of 0.33, and 
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space are returned to the Dynamo interface to be presented to 
the user.

Working within the Dynamo environment allows users to append 
this system to the scripts, also known as graphs, that they have 
already developed as a means of searching for design solutions. 
The user defines all the parameters and geometric constraints 
they wish to include in their design during the creation of their 
original Dynamo graph. Once the user has created their graph, 
they will add two additional components created for this project 
to aid in the training task.

The first component, called GenomeEncoder, takes as input the 
range values for each parameter the designer wishes to include 
in the system (Figure 5). It is responsible for creating the random 
sample populations from which the user will make training selec-
tions, and recording their normalized parameters as a relative 
percentage of the range for each given parameter. This is accom-
plished by generating random parameter sequences within the 
range provided for each parameter of each design. The resulting 
two-dimensional list is then passed to the user-created portion 
of the graph, which generates the geometric representation of 
the design options.

The second component the user adds to their script is the 
PhenotypeSelector. This component takes in the normalized 
population parameter set from the GenomeEncoder, as well 
as the selection ranking values from the user, and assembles 
population-ranking pairs to be passed to the Python program for 
training. User selections from the sample population are provided 
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all other designs receive a score of zero. This creates a training 
object of input dimension equal to the product of the number of 
designs per generation and the number of parameters per design. 
The output dimension is equal to the number of designs per 
generation, allowing for one score value per design. The network 
is then configured with the same input and output dimensions as 
the training objects and two hidden layers by default. 

The network is being trained to evaluate designs in the context 
of the presented options. This enables the network to later act as 

9	 Random sample population of 
massing designs as seen by the 
user during the selection process in 
Dynamo.

a fitness function for the genetic algorithm, iteratively evalu-
ating the design options presented to it as inputs and returning 
their fitness scores relative to the population as outputs. This 
relationship is key to the searching capability of the system and 
its versatility in scoring regions of the parameter space outside 
of the initial training set based on its model of the user’s scoring 
heuristics.

Backpropagation training is used to train the network for multiple 
cycles, or "epochs," through the entire training set. Each epoch 
reinforces the relationships in the network by allowing the 
continued correction of connection weights in the network 
(Hecht-Nielsen 1988). The trained network is capable of being 
provided with the parameter values of all individuals in a popula-
tion, and returning an array of score values representing the 
anticipated selection score for each individual. This network, 
when activated, is intended to represent the user’s selection on 
the context of the input population. 

To initiate the search, random sample population is formatted and 
provided to the trained neural network for scoring, and serves as 
the first generation of the genetic algorithm. The scores returned 
by activating the network with the sample generation provide 
the “fitness” for each of the individual designs in the population. 
Using these fitness scores, the genetic algorithm evolves the 
population toward the highest performing scores (Figure 7). The 
parameters of the top scoring individuals in the population are 
crossed to create the next population. As with any evolutionary 
solver, variation is introduced into the population through chance 
mutation of the genes, in this case design parameters, of the 

8	 Identification of cluster centroids in 3D principal component analysis space 
using DBSCAN.
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individuals. Mutation ensures that new regions of the parameter 
space are being sampled as new generations are evolved from 
the previous. As random mutations create higher performing 
designs, they are selected and the next generation will contain 
more of their traits. 

Individuals returned from all evolutions of the population begin 
to form high-density structures in the parameter space. The 
concentration of individuals in a region of the parameter space 
is the result of high performance in the region. This is due to 
the ability of high performing individuals to pass their genes on 
to the next generation. Identification of the parameter set at 
the most dense regions of the parameter space determines the 
highest performing individuals found by the search.

To evaluate clusters of designs with high numbers of param-
eters, principal component analysis (PCA) is employed for 
dimensionality reduction. PCA is used to reduce higher dimen-
sion parameter spaces to a specified number of perpendicular 
summary dimensions (Abdi et al. 2010). A three-dimensional PCA 
space not only allows for effective measurement of the similarity 
of design options, but also the ability to visualize the results of 
the search using a conventional scatter plot. This reduction in 
dimensionality makes clustering effective with higher numbers of 
design parameters (Jolliffe 2002).

Density-based spatial clustering of applications with noise 
(DBSCAN), developed by Martin Ester et al. (1996), is used for 

identifying the high-density clusters within the PCA space. The 
centroid of each cluster can then be calculated as the average 
of each parameter value for all individuals in the cluster. This 
centroid is used to represent the average design found in the 
cluster (Figure 8). These centroids must be converted back to 
the original parameter space from the three-dimensional PCA 
space before being returned to the user’s Dynamo graph. Once 
this conversion is complete, the set of design parameters are 
returned to the user's Dynamo script, where the parameter 
values can be used to recreate the geometric representations of 
the search results.

Participants in the verification study for this system were asked 
to make selections of the top performing options from a set of 
color-coded programmatic masses representing the schematic 
diagram of a building (Figure 9). Participants were not asked to 
develop the Dynamo script that produces this geometry. This 
parameter space was chosen to provide the complexity neces-
sary to test the effectiveness of the PCA analysis, while still 
producing geometric representations with recognizable charac-
teristics that could be visually correlated with parameter values.

Users were provided with three explicit base selection criteria to 
provide a means of gauging the system’s ability to replicate the 
criteria. Any additional features they wished to consider could be 
included in addition to these criteria. The first group of partici-
pants were asked to rank designs based on how well they met 
the following design criteria:
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10	 Training convergence MSE (Y) over training epochs (x).
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•Program C (blue) must be adjacent to or near program D 
(purple).

•Program A (yellow) must be on the ground level.

•Programs should have minimum overlap.

The first criterion is intended to allow for the evaluation of the 
system’s ability to recognize criteria resulting from a limited 
set of relative relationships between design parameters. In this 
case, the five parameters of both the blue and purple masses. 
The second criterion is intended to allow for the analysis of the 
system’s ability to reproduce selections that have an absolute 
parameter value that is favored by the user. In this case, the z 
parameter of the yellow mass should have a value of zero when 
on the ground plane. The third criterion tests the system’s ability 
to produce results that satisfy a global relationship resulting from 
a combination of all parameters in the system. This requires the 
returned designs to satisfy different complex sets of possible 
combinations of parameters that result in this criterion being met. 
Providing participants with well-defined criteria for selection is 
necessary in order to evaluate whether or not the system is able 
to emulate these criteria in its search process.

Training sets generated through this process were used to gauge 
the algorithm's predictive capabilities. Quantitative evaluation of 
the system's predictive capabilities was conducted using cross 
validation. Cross-validation performance was measured by the 

mean square error (MSE) of the system when predicting score 
values for populations in both the training and validation sets. 
Qualitative evaluation was performed through visual assessment 
of the system's returned designs for adherence to the design 
objectives provided to the users.

RESULTS AND DISCUSSION
Figure 10 shows the MSE convergence during network training. 
MSE in the training set levels out at an average value of ~0.0153, 
while the validation set averages ~0.0928. This variance does 
not account for the fact that selections are made based on 
the relative rankings of designs to others in the population. 
This correlation does, however, show that even when trained 
with only 138 examples, the system can begin to emulate the 
designer’s scoring.

Visual review of search results shown in Figure 11 suggests that 
the system can begin to emulate a generalized set of desired 
relationships between parameters in the design, however, it did 
not perform as well at recreating exact values for parameters 
that might be recognized by the user. For example, in most result 
populations the blue and purple masses are directly adjacent to 
each other, but the yellow mass does not always have an exact 
Z location of zero to place it on the ground plane. However, the 
yellow mass does tend to maintain the relationship to the other 
masses, which results from being on the ground plane, meaning 
that it is almost always the lowest volume in the set. The third 
design objective, to minimize overlap between masses, seems 

11	 Massing designs returned by system after user training and search.
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to also have some representation in the results returned, as 
most designs show a clustering of masses along an edge of the 
largest mass. This would suggest that the system has not been 
successful at meeting this criterion in the context of the other 
criteria.

In comparison to the randomly generated starting conditions 
created by the system (Figure 8), the results (Figure 10) returned 
do more closely meet the design criteria. These results show that 
this prototype system is capable of learning inexplicit criteria. 
Visual comparison of the PCA space graphs generated for each 
user show strong similarity in their relative regions of density 
(Figure 11). This suggests that the similarity in the user’s criteria 
for selection is also represented in the system's evaluation of the 
solution space.

One of the challenges in the development of this system is the 
limitation of user selection through active input. Users of the 
system are not likely to spend long periods of time actively 
making selections. This results in a dataset that is extremely small 
relative to most applications of neural networks and machine 
learning. Small training sets cause several problems for the 
system, including the propensity for overfitting and even greater 
limitations on the ability to validate predictive capabilities, due 
to very small numbers of validation samples as a fraction of the 
training set. These limitations will be addressed by the future 
development of more passive methods of collecting designer 
selection criteria. The architecture of this software is such that 
the means of generating the training set is left open, allowing for 
the possibility of scaling or modifying the user input process. The 
creation of training sets has the potential to be a team or even 
crowdsourced task. Collaborative training by a group of designers 
or clients could also provide a means of generating much larger 
and perhaps more meaningful training sets for accomplishing 
design tasks.

CONCLUSION
This project implements a method for capturing and emulating 
a designer’s inexplicit qualitative selection criteria as a means of 
searching vast solution spaces for design options. The iterative 
search power of the machine, when paired with user-trained 
neural network models for evaluation, leverages the strengths of 
both the designer and the machine. This is a potentially powerful 
method of discovering designs favorable to the designer in 
solution spaces larger than the designer could ever thoroughly 
search. This work shows that even with small numbers of training 
objects, a search tool with this configuration is capable of 
forming a model that begins to emulate the design criteria of the 
user who trained it.
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